
Advanced database systems

The Survey of
GPU-Accelerated Database Systems

Group 133
Abhinav Sharma, 1009225

sharma.a1@student.unimelb.edu.au

Rohit Kumar Gupta, 1023418
rohitkumarg@student.unimelb.edu.au

Shun-Cheng Tsai, 965062
shunchengt@student.unimelb.edu.au

Hyesoo Kim, 881330
hyesook@student.unimelb.edu.au

Abstract

GPUs can perform batch processing of considerable chunks in parallel, providing
extreme performance over traditional CPU based system. Their usage has shifted dras-
tically from exclusive video processing to generic parallel processing. In the past decade,
the need for better processors and computing power has increased due to technological
advancements achieved by the computing industry. GPUs work as a coprocessor of
CPUs and the integration of their architectures has raised many bottlenecks.

Multiple GPUs solutions have been developed by industry to tackle these bottle-
necks. In this paper, we have explored the current state of GPU-accelerated database
industry. We have surveyed eight such databases in the industry and compared them on
eight most prominent parameters such as performance, portability, query optimization,
and storage models. We have also discussed some of the significant challenges in the
industry and the solutions that have been devised to manage these bottleneck.

Contents

1 Introduction 1

2 Background Considerations 2

3 The design-space of GPU-accelerated DBMS 3

4 A survey of GPU-accelerated database systems 4
4.1 CoGaDB . 4
4.2 GPUDB . 6
4.3 OmniSci/MapD . 8
4.4 Brytlyt . 10
4.5 SQream . 13
4.6 PGstrom . 15
4.7 OmniDB . 17
4.8 Virginian . 19

5 GPU-accelerated Database Systems Comparison 21
5.1 Functional Properties . 21
5.2 Non-Functional Properties . 24

6 Open Challenges and Research Questions 25

7 Conclusion 27

1 Introduction
Moore’s law states that the processor speeds or overall processing power for computers would
double every two years1. Due to technological advancements in transistor speed and energy
scaling, microprocessors performance had grown consistently for decades[1]. However, de-
cline transistor-speed growth and physical limitations of energy have generated new chal-
lenges for performance scaling, and as a result, the growth rate has declined. With these
limiters of performance, research has moved to designs that utilize the large-scale parallelism,
heterogeneous cores, and accelerators to deliver performance and energy efficiency[1]. The
software-hardware partnership is being explored to achieve efficient data orchestrations to
achieve energy-proportional computing[1]

GPUs have evolved into notably powerful and flexible processors, and their architecture
provides enormous memory bandwidth and computational power. These GPUs now have pro-
grammable units which can support vector operations and IEEE floating point precision[2].
This has facilitated the GPUs architectures to develop GPU based solutions for data-parallel
computations. The high processing power and memory bandwidth of modern graphics cards
make them a powerful platform for data-intensive applications with the capability to execute
massive calculation on data in parallel [3][4]. In the Big-Data era, this capability of GPU
has lead to strong demand for GPU accelerated databases.

Over the last decade, serious progress has been made by the database research community
to investigate the methods to accelerate database systems integration of GPUs. Various
research papers, along with performance studies, have demonstrated the true potentials of
GPU integrated Databases, which has eventually led to the development of a few matured
commercial GPU-accelerated database products[4]. These products are integrated at various
levels with existing architectures and have been designed to act as a powerful coprocessor[4].

Despite the drastic increase in flexibility of GPUs, many applications still lie outside the
scope and don’t suit the GPU based solutions. For example, Word processing that requires
high memory communication and cant be easily parallelized[2].

Acceleration of databases using GPUs has its own set of bottlenecks and pitfalls. The
most significant hurdle is the data transfer bottleneck between CPU and GPU, which requires
reducing and concealing the delays via various data management and caching models[5].
There are some challenges due to the variation in storage models and storage strategies
across systems. Even the integration of GPUs with “real-world” Database Management
System (DBMS) faces issues related to query processing and data structures[5].

In this paper, we have:

1. studied eight GPU-accelerated DBMSs (GDBMSs) to evaluate each of them on six
non-functional and two functional parameters

2. provided a comparison of each GDBMS on individual parameters

3. discussed some of the major open challenges and solutions propositions

1https://newsroom.intel.com/wp-content/uploads/sites/11/2018/05/moores-law-electronics.pdf

1

2 Background Considerations
In this section, we provide a brief overview of the Graphics processing unit (GPU) by ex-
plaining its architecture and working. A Graphics Processing Unit (GPU) is a specialized
electronic device which is initially designed with the purpose of generating output frames
intended to display on some output device. It can now be used as the general computa-
tion device for performing several large computational operations in diverse multi-threaded
environments, which is primarily called GPGPU2. These GPUs have immense processing
power due to their large bandwidth and extreme speed for solving floating point operations
as compared to CPUs, which is shown in Figure 1.

Figure 1: Comparison of performance for NVIDIA GPUs and Intel CPUs, taken from [6]

Figure 2 shows the architecture of a general modern computer system installed with a
graphics card. The graphics card, which is an external device, is connected to the host system
using PCI express3 bus. The graphics card contains its device memory and typically it cannot
access the host system’s main memory. GPU can only interact with graphics card device
memory due to which data is required to be transferred from the host’s main memory to device
memory using a low-bandwidth bus. The GPU itself contains several small multiprocessors
which use on-chip shared memory with memory controllers and instructor decoders. Due to
these several multiprocessors, GPU provides extreme multi-threaded processing environment
which enables tasks to perform heavy computations in a small interval of time.

Figure 2: Exemplary architecture of a system with a graphics card, adapted from [7]

2General purpose graphics processing unit
3Peripheral Component Interconnect express(PCIe) - interface for connecting high-speed components

2

3 The design-space of GPU-accelerated DBMS
In this section, we will discuss the design-space of GPU-accelerated database systems. By
exploring the design-space, we are trying to figure out the parameters on which we can survey
and compare different database systems which support GPU acceleration.

Functional Properties. The properties which are comprised of understanding the func-
tionalities of the system. These properties help us in providing a technical understanding of
the workflows and give deep insight on how everything is managed in the system.

Storage System. A functional property which can be used to understand the underlying
storage system of database systems with GPU-acceleration. In terms of the design-space, the
storage system can describe the decision of GDBMS4 of choosing a disk-based system or
host’s main-memory as their primary storage space.

Storage Model. After database system has decided which storage system will work as
per their requirement, this property describes their decision of choosing how data is going to
store in the selected storage system. These systems can store their data in either row-store
or column-store format.

Processing Model. This property describes the model adopted by the database system
to process SQL queries. There are several processing models which are used in the database
system widely such as tuple-at-a-time, operator-at-a-time, bulk-processing, record-oriented-
processing, and others.

Buffer Management. This property is used to describe the policies and strategies
adopted by the GPU-accelerated database systems to manage data transfer requirements.
Some system tends to create a specialized module while other manages it by implementing
isolated programs which are usually executed on the host machine.

Query Placement and Optimizations. This property is used to describe how opti-
mizations are implemented in these database systems. Query placement describes scenarios
where the system is able to decide which part of the query should be executed on which
device in a multi-processing environment.

Consistency and Transactions Processing. This property is used to describe how the
database system manages consistency and process transactions. It also analyzes the system’s
ability to perform all transaction related operations such as commit, rollback and locking
mechanisms such as 2-phase locking, optimistic locking, and others.

Non-Functional Properties. The properties which are used to understand non-functional
aspects of the system. These properties are not used to describe the system’s technicalities
and framework workflows. They are used to explain the overall system’s operations, different
identifiers, summarizing attributes, and giving brief insights on the quality parameters.

Performance. This non-functional property helps us in reviewing the entire system’s
working and efficiency. It can describe the overall impact of the database system which can
be compared with other similar systems for analyzing the implemented system’s ability and
throughput.

Portability. This non-functional property is used to understand the system’s ability to
be independent of hardware requirements and specifications. It is used to analyse whether the
database system is hardware-oblivious, independent of the hardware provided, or hardware-
aware, dependent on the hardware specification.

4GDBMS - GPU-accelerated database systems

3

4 A survey of GPU-accelerated database systems

4.1 CoGaDB
4.1.1 Overview

CoGaDB5 is a column-oriented coprocessor-accelerated database system which effectively
provides a high-performance OLAP engine[8] that makes efficient use of GPUs, CPUs or
MICs (Xeon Phi) for query processing. This system is developed by the DIMA group at
Berlin and the IAM group at the German Research Center for Artificial Intelligence.

CoGaDB implements a specialised cost modelling algorithm for selection of the most effi-
cient heterogeneous processor environment using parallel query processor and Hybrid Query
Processing Engine(HyPE)[9]. It also uses a customised query compiler called Hawk[10] for
generation of specialised code for different processors which are highly optimised depending
upon the query workload and data set.

4.1.2 Architecture

S Breß and others developed CoGaDB architecture to be highly efficient and modularized
as shown in the top-down approach in Figure 3. As most DBMSs, CoGaDB provides SQL
frontend interface which can be used to write SQL language queries and launch it to get re-
sults from the database. Then, CoGaDB’s logical optimizer applies pre-defined optimization
policies to generate a new query plan which is then provided to HyPE[9] for processing. The
hybrid query optimizer creates an optimized physical query plan from the logical query plan
which is then passed to Hawk[10] for machine code generation.

Figure 3: The architecture of CoGaDB, adapted from [10] and [11]

4.1.3 Exploring the design-space

4.1.3.1 Functional properties

Storage system
The work of He and others showed that GPU acceleration is not beneficial if data is required
to be fetched from the disk[12]. Therefore, CoGaDB uses main-memory as the primary source
of storage system for its working. Moreover, CoGaDB can transfer data from main memory
to GPU very efficiently, leading to an immense increase in the GPU acceleration.

5http://cogadb.dfki.de/

4

Storage model
CoGaDB needs an efficient storage model to work with the requirement of loading the entire
database in main memory during startup. Taking this requirement into consideration, Co-
GaDB chooses a columnar data layout as the storage model because of higher compression
rates which can save immense memory and gives provision of storing data more efficiently
due to the columnar nature.

Processing model
CoGaGB is designed with the objective of using all available processors depending upon
the operators to improve query processing and performance. Thus, CoGaDB implements
operator-at-a-time bulk processing model with operator-based scheduling that distributes
the set of queries on all available processing resources[8] and make the most efficient use of
the memory hierarchy.

Buffer management
Data placement strategy is required by the processors with dedicated memory to move data
to their memory whenever needed for performing tasks and operations. CoGaDB handles
this requirement using the dedicated GPU buffer manager module. GPU buffer manager[8]
is responsible for providing required data to the GPU operators whenever input columns are
requested by them.

Query Placement and Optimisation
GPU-accelerated database systems need to handle the environment of multiple-processing
devices. CoGaGB addresses this problem of query placement and optimization by building
their custom solution - Hybrid Query Processing Engine(HyPE). This module optimizes
physical query plan by applying several optimization algorithms and make use of Hawk
engine to produce highly optimized machine code variant for target processing device.

Consistency and Transaction Processing
It is challenging to maintain consistency in the immense multi-thread environment provided
by the GPU. CoGaDB does not implement any explicit consistency standards and transac-
tions support but provides some fault tolerance mechanism to support the durability of the
system which eventually leads to consistent data storage.

4.1.3.2 Non-functional properties

Performance
S. Breß and others benchmarked CoGaDB by using Star Schema Benchmark[13], which is a
popular OLAP framework frequently used for performance evaluations. By running queries
provided by SSBM6, CoGaDB GPU-acceleration can be compared and evaluated with the
other versions such as MonetDB7. With the help of these benchmarking, performance insights
of CoGaDB can be drawn as shown in Figure 4.

Portability
CoGaDB tries to achieve the hardware-oblivious design by implementing all vendor-specific
operators in the system. This strategy leads to high development and implementation cost

6Star Schema Benchmark
7Open-source column-oriented database management system

5

Figure 4: Response times of CoGaDB for the SSBM, taken from [8]

but provides good probability standard. Though, it still relies entirely upon the vendor-
specific implementations and fails on the systems where vendor-specific GPU hardware is
not present. Hence, CoGaDB doesn’t have true hardware-oblivious nature.

4.2 GPUDB
4.2.1 Overview

Yuan and others started research on utilizing the power of GPU to process data warehousing
queries. They believed that the implementation of such a database system with the accelera-
tion of the GPU could provide extremely high-throughput as compared to the CPU or other
processing engines. They build several modules using the drivers and libraries provided by
CUDA8 and OpenCL9 to implement a database system called GPUDB[14], which enabled
them to execute OLAP workload driven queries on the GPU.

4.2.2 Architecture

The architecture of GPUDB is shown in Figure 5. As the most DBMSs, GPUDB follows
the same approach of providing SQL client interface for the user to submit queries. This
input query is then passed to SQL parser which converts the provided query into the logical
query plan. It is then followed by the query optimizer and query execution engine of GPUDB
for generating machine code variant that can be executed on the GPU kernels. The engine
also relies on the late materialization strategy[14], which fetches the required columns by the
operators into the memory at the very end of the processing. Furthermore, some of the code
is executed in the CPU kernels which handles the data transfer between CPU’s host memory
to GPU’s memory and initiating GPU kernels whenever required.

4.2.3 Exploring the design-space

4.2.3.1 Functional properties

Storage system
Yuan and others have identified the solution to the PCIe transfer bottleneck limitation by
introducing a crucial optimization concept of pinned host memory, which is a memory that
cannot be swapped out leading to the allowance of direct access by the GPUs. Initially,
GPUDB loads the entire database into CPU’s host memory in order to avoid disk transfer

8Parallel computing platform and programming model invented by NVIDIA
9Framework for writing programs that execute across heterogeneous platforms such as GPUs

6

Figure 5: The architecture of GPUDB, adapted from [14]

bottlenecks and stores some of the data in pinned host memory depending upon the operators
and query plan, which is directly accessible by the GPU.

Storage model
GPUDB adopted column-oriented storage as their primary storage model due to its extreme
efficiency in supporting compression algorithms and materialization strategy. GPUDB’s
query engine supports different data compression techniques which are very effective and
easy to implement in columnar storage. Thus, GPUDB directly works with compressed data
for performing computations and operations whenever possible, which is supported by using
the column-oriented storage model.

Processing model
As shown in Figure 5, GPUDB provides SQL client interface and interactive component
for users to push their SQL queries to the database engine. For processing these queries,
GPUDB uses a block-oriented processing model[15], which is a technique in which operators
are processed in blocks as compared to singleton operators processing.

Buffer management
Unlike CoGaDB, GPUDB does not provide any dedicated buffer management module for
implementing efficient data placement strategies. It handles its data requirements by running
an isolated program interface on the host CPU’s main memory which fetches data from
column-oriented storage to provide it to GPU memory in late materialization manner. This
program also handles data placement in the host’s pinned memory to enable direct access by
the GPU.

Query Placement and Optimisation
GPUDB does not implement any processor selection and cost estimation algorithm to de-
cide query placements depending upon the requirement. It only supports the execution of
any database related operations in the GPU environment using CUDA or OpenCL driver
programs which are designed and optimized with pre-implemented GPU operators. GPUDB
supports optimizations using its query optimizer module which induces certain performance-
improving changes in the logical query plan using provided algorithms and strategies.

7

Consistency and Transaction Processing
GPUDB does not implement any algorithms or strategies for maintaining consistent stan-
dards for the system. After reviewing and reading several research papers, it can be concluded
that GPUDB does not provide any fault tolerance policies or locking mechanism for handling
transactions or inconsistency in the system. There is no module with the implementation of
consistency and transaction processing in the GPUDB ecosystem.

4.2.3.2 Non-functional properties

Performance
Yuan and others benchmarked and analyzed the performance of GPUDB by using Star
Schema Benchmarking (SSBM) queries to simulate OLAP workloads. They also performed an
analysis of using pageable and pinned host memory for understanding the complications and
limitations of PCI express bus data transfer. These performance insights can be visualized
in Figure 6.

Figure 6: SSBM performance comparison, taken from [14]

Portability
GPUDB is extremely dependent on NVIDIA’s CUDA libraries and OpenCL framework sup-
port providing graphics card. From this perspective, GPUDB fulfils minimal hardware-
oblivious requirements as it did not implement all vendor-specific operators which are cur-
rently available in several heterogeneous processing environments. In terms of portability
perspective, GPUDB needs to incorporate lots of module and vendor-specific changes in
order to reach a basic design of being hardware-oblivious.

4.3 OmniSci/MapD
4.3.1 Overview

Massively Parallel Database (MapD) originated from research at MIT’s Computer Science
and AI Laboratory by Todd Mostak. It was developed as a data processing and visualization
engine, combining traditional query processing capabilities of DBMSs with advanced analytics
and visualization functionality [16].In 2017, MapD open-sourced the Core SQL Engine, built
to harness the supercomputing power of GPUs.[17]. And in 2018, MapD was rebranded to
OmniSci[17] Sample interactive data visualizations can be found at https://www.omnisci.
com/demos/.

4.3.2 Architecture

MapD uses in-memory storage and leverages SSDs for persistent storage. It also uses just-in-
time LLVM(Low-level Virtual Machine)-based compiler to compile SQL queries into machine

8

https://www.omnisci.com/demos/
https://www.omnisci.com/demos/

code.[16] MapD architecture implements a pyramid model, where each successive level of
memory is slower computationally but larger in size than the last.[16]

OmniSci was architected for the GPU with focused development to enable common SQL
analytic operations such as filtering (WHERE), segmenting (GROUP BY) and joining (JOIN)
to run as fast as possible with native GPU speed.

Figure 7: OmniSci/MapD architecture[18]

4.3.3 Exploring the design-space

4.3.3.1 Functional properties

Storage system
OmniSci/MapD GPU-powered SQL data platform uses in-memory storage and leverages
modern SSDs for persistent storage. MapD tries to avoid disk access by keeping most of its
data in memory. In contrast to other GPU systems that store data in CPU to transfer it
during query time, OmniSci Core caching up to 512GB of the most recently touched data to
avoids this transfer inefficiency[18].

Storage model
OmniSci/MapD stores data in a in the column format and partitions columns into chunks.
Columns that are frequently used for filters are cached in the GPU memory.[16]

Processing model
The basic processing model of MapD is processing one operator-at-a-time. A chunk is the
basic unit of MapD’s memory manager. Due to the partitioning of data into chunks, it is
possible to process data on a per chunk basis. Hence, MapD is capable of applying block-
oriented processing[16].

Buffer management
When queries are executed, the OmniSci Core database optimizer utilizes GPU RAM first if
it is available. You can view GPU RAM as an L1 cache conceptually similar to modern CPU
architectures. The OmniSci Core database attempts to cache the hot data. If GPU RAM is
unavailable or filled, the OmniSci Core database optimizer utilizes CPU RAM (L2). If both
L1 and L2 are filled, query records overflow to disk (L3).[19]

9

Query Placement and Optimisation
MapD applies a streaming mechanism for data processing. The optimizer tries to split a
query plan in parts, and process each part on the most suitable processing device.[16] Within
one node, OmniSci uses a shared-nothing architecture between GPUs. On query processing
each GPU processes independently processes data, from other GPUs.[18]

OmniSci uses a JIT (Just-In-Time) compilation framework built on LLVM (Low-level Vir-
tual Machine) that allows OmniSci to transform query plans into an architecture independent
intermediate representation code (LLVM IR)[18]. OmniSci also improves performance using
vectorization[18].

Consistency and Transaction Processing
OmniSci/MapD ensure consistency in a distributed system with method of ’Immediate/Strong
consistency’.

4.3.3.2 Non-functional properties

Performance
Compared to traditional data warehouses that used techniques such as indexing, downsam-
pling or pre-aggregation for an increase of performance, OmniSci Core leverages GPUs to
achieve the massive performance gains[18]. Coupled with its execution engine, GPUs deliver
instantaneous query execution without the need to index, downsample or pre-aggregate be-
forehand[18]. This approach has two major upsides. First, organizations deploying OmniSci
can simply load the data and use fast SQL without spending significant time and resources
modeling[18]. Second, OmniSci can load the data quickly due to the lack of any significant
preprocessing.[18]

Portability
OmniSci has taken GPU-native approach. Its fast hardware requires software designed specif-
ically for the GPU’s unique advantages. As a result, OmniSci’s uses software to harnesses
the hardware attributes that deliver analytic performance at speed, even when running on
hardware with both GPUs and CPUs.[18]

4.4 Brytlyt
4.4.1 Overview

Brytlyt combines GPU hardware for processing joins in parallel(Using patent-pending intel-
lectual property). Brytlyt is built on PostgreSQL and supports all its features, including
stored procedures, full JSON support, and PostgreSQL’s native data connectors. It can
easily leverage existing technology as well as connect directly to any existing data source.
Hence it is easy to integrate Brytlyt with existing investments, lowering time-to-value, and
increase ROI[20]. Brytlyt’s solution drastically improves data processing power without the
corresponding significant financial investment.

There are multiple factors involved in the selection of a GPU accelerated database. Figure
8 will make it clear.

4.4.2 Architecture

Brytlyt supports JOIN operations directly on the GPU. Data is broken in blocks and dis-
tributed to GPU cores that search through using horizontal partitioning.[22]

10

Figure 8: Factors for GPU Accelerated Database Selection[21]

Brytlyt’ patent-pending method recursively searches and separates the rows into a ‘hit’
and ‘not hit’. These operations run in parallel[20]. Blocks of broken data are distributed to
the parallel cores for searching. For example, a dataset of 400,000 rows can be broken in 200
rows for 2000 GPU cores running in parallel and working independently on their blocks of
data. The process runs recursively until only the relevant block remain and empty ones are
discarded.[20]

Brytlyt supports basic SQL operations such as filters, sorts, aggregation, groups, and
joins[22]. Data is stored in vectorized columns and transferred between CPU and GPU
memory during an execution cycle[22].

4.4.3 Exploring the design-space

4.4.3.1 Functional properties

Storage system
Brytlyt is a disk-oriented database. Data is stored on disk using the table and index. Data
transfer is fully scheduled between GPU and CPU memory to reduce the data transfer over-
head.[22]

Storage model
Brytlyt database uses the storage model that is derived from PostgreSQL, which stores data
using N-ary storage model10.

Processing model
Brytlyt has adopted the open source database PostgreSQL on which it implements its intel-
lectual property on SQL operations. With PostgreSQL, brytlyt can extend the full suite of
SQL and programmatic SQL functionalities.

In Brytlyt, queries are executed on both CPU and GPU. For CPU Tuple-at-a-Time model
is much more suitable, however, for the GPU acceleration the vectorized method to increase
the parallelism is used. Vectorized data processing speeds utilizes the speed of modern
hardwares for building highly efficient analytical query engines[20].

10https://www.postgresql.org/docs/9.4/storage.html

11

Buffer management
Brytlyt mostly keeps its data in the main system memory to improve the performance, since
the performance of GPU-accelerated database highly depends on the data PCIe transfer
efficiency. And the data transfers can be significantly accelerated by keeping ‘semi-hot data’
in host memory and hot data in GPU RAM. In order to avoid PCIe bottlenecks Brytlyt
maintains a 1:1 ratio of CPU and GPU to utilize the full capabilities of the system.[20]

Query Placement and Optimisation
Main difference between CPU and GPU in-memory database is how they store and pro-
cess data. Data usually resides in CPU memory in vectorized columns to optimize parallel
processing across all available GPUs. The data is moved as needed to GPU memory for
both mathematical and spatial calculations, and the results then returned to CPU[20]. For
smaller data sets and live streams, the data can reside entirely in the GPU’s for even faster
processing.[20]

Consistency and Transaction Processing
Brytlyt follows ’Immediate/Strong consistency’. In a lecture presented by Richard Heyns[23],
the CEO of Brytlyt, they support PostgreSQL’s WAL mechanism 11 and have no logical
changes in concurrency control levels, which are derived from PostgreSQL

4.4.3.2 Non-functional properties

Performance
Brytlyt gained huge performance improvement over traditional databases due to its architec-
ture and specialized execution of SQL operations. It could perform around 300 times faster
during independent benchmark test.12[20] Brytlyt performance results(figure 9) were gained
from indicative testing based on the TPC-H Query 1 out of multiple queries.[20]

Figure 9: Performance comparison of Brytlyt[20]

Portability
One of the major advantage of Brytlyt is that is it built on the PostgreSQL and is com-
plimented with its deep functionality of SQL on PostgreSQL. Current investments in code,
analytics and visualisation remains untouched and above that processing can be accelerated
with integration of Brytlyt with little to no effort. Also integration is almost seamless with
existing systems using data connectors.[24]

11https://www.postgresql.org/docs/9.1/wal-intro.html
12https://tech.marksblogg.com/benchmarks.html

12

4.5 SQream
4.5.1 Overview

SQream13, found in Isreal by Ami Gal and Kostya Varakin, provides a GPU accelerated data
warehouse for data scientists, business intelligence professionals and developers to execute
complex SQL queries to gain insights from large dataset using the tools they use today.
SQream DB exploits GPU computing power to increase the performance of columnar queries
by at least 20 times on large dataset.

4.5.2 Architecture

While traditional database should increase nodes of CPU to running massively parallel oper-
ations, SQream DB uses both CPU and GPU to process large dataset, and especially running
massively parallel computing on GPU since GPU perform very well with repetitive opera-
tions on large amounts of data parallelly. For those operations, which are computing different
logics and not easy to be paralleled, are best performed on the CPU. Therefore, the compiler
will decide which operations should be performed on CPU and the others be performed on
GPU. As a result, SQream DB is able to make the most from both CPU and GPU.

Figure 10: SQream DB architecture [25]

4.5.3 Exploring the design-space

4.5.3.1 Functional properties

Storage system
SQream DB persists data on the disk but reads the necessary data into main memory for
further operations[26]. However, fetching performance becomes the biggest issue in a query’s
runtime. This meant it would also be the biggest bottleneck. SQream uses the GPU com-
pressing and filtering technique to reduce I/O bottlenecks.

Storage model
SQream DB is a columnar database designed for GPU-accelerated computing. We consider
the columnar approach as a vertical partition which operate very well on GPU. SQream DB

13https://en.wikipedia.org/wiki/SQream_DB/

13

also provides horizontal partitioning which splits up data into chunks. These chunks then
are compressed by the algorithms and become small, which makes them efficient for transfer
across the PCI bus to the GPU for processing.

Processing model
The processing model of SQream DB is operator-at-a-time. It could also apply block-oriented
processing since it is capable to process by a chunk. SQream DB provide interface for user
either directly querying by SQL-92 standard or through a connector like ODBC or JDBC,
as well as native Python and ADO.Net[27].

Buffer management
SQream DB is capable to compresses data all the time and that minimizes the I/O to about
20-25 percent to communicate to the data. In addition to accessing for query speed, It can
ingest data at approximately 3 terabytes per hour per GPU so it has an initial load and
then it can continually insert new data and delete old data. Because of the data have been
compressed and break into chunks, the data can easily place that on the flash storage.

Query Placement and Optimisation
SQream DB has query compiler and plan optimizer to decide the operations should perform
on GPU or on CPU. For instance, since GPU is good at computing repetitive and parallel
process but not good for performing text operations, the compiler will make these happen
on CPU. In the converse, the compiler will decide which columns will go up to the GPU for
processing, if the tasks can be parallelized.

Consistency and Transaction Processing
SQream DB is capable to support large amount of users due to its unique shared-data archi-
tecture. It also comply with atomicity, consistency, isolation and durability(ACID), which
means it has transparent commit, rollback and recovery, with full isolation. That is to say,
the data is always safe and consistent in SQream DB.

4.5.3.2 Non-functional properties

Performance
SQream claims that SQream DB could process up to 100 times faster than other relational
databases with a large dataset. SQream provides an example which doing 85 terabytes using
Apache Phoenix, a relational database engine, and it takes five hours to get through, while
SQream DB takes the queries down to five minutes. Therefore, SQream DB outperforms
than traditional database which running only on CPU with a large dataset.

Portability
SQream DB is tailored to NVIDIA’s CUDA libraries, therefore it runs on Nvidia Tesla GPU
which is coupled to whatever CPU customers can pair it with, typically a multicore Intel
Xeon. Recently, SQream DB releases its version 3, changing from Xeon processors to IBM’s
Power9 processors’ pair with Nvidia Tesla V100 GPU. As a result, SQream DB is not a
hardware-oblivious database.

14

4.6 PGstrom
4.6.1 Overview

PG-Strom is an extension software for PostgreSQL(v9.5 or later) to speed up complex SQL
workloads with a large dataset. PG-Strom uses GPU to scan a large number of records
with complex qualifiers[28]. PG-Strom compiles relative GPU code rapidly according to SQL
optimizer decisions of the custom plans which use GPU for SQL execution.

4.6.2 Architecture

As Figure 11 shown, we usually need to load whole data block on the storage to CPU even
though there are junk data for CPU, but PG-Strom presents SSD-to-GPU Direct SQL Exe-
cution, which loads the entire data block to GPU RAM by GPUDirect RDMA. At first, SQL
parser breaks down the supplied SQL queries to parse tree. Then GPU code generator that
automatically generates GPU program according to the SQL commands and asynchronous
parallel execution engine to run SQL workloads on GPU device[29]. These codes then provide
to execution engine to pre-process data on GPU device to reduce data size prior to its arrival
at CPU/RAM.

Figure 11: PG-Strom architecture adapted from [30]

4.6.3 Exploring the design-space

4.6.3.1 Functional properties

Storage system
Because PG-Strom utilizes PostgreSQL as its database system, we can say that it is a hard-
disk-based system. However, it’s different from other DBMSs designed on typical HDD.
Instead, it exploits the performance benefits from using SSD. Although the PCIe transfer
is expensive and is considered as the major overhead in GPU execution, PG-Strom has the
unique feature, SSD-to-GPU Direct SQL Execution, to bypass the PCIe transfer. This bypass
allows to pull out nearly wired performance of the hardware[30].

Storage model
PG-Strom is a row-oriented storage model because of utilizing PostgreSQL. However the
latest PG-Strom version supports to transfer data structure from row-oriented to column-

15

oriented on GPU device memory. Using columnar format significantly reduces the amount
of data, this results in efficient utilization of bandwidth throughout the storage hierarchy.

Processing model
PG-Strom enhance query processing and performance by utilizing all available processors
according to operators. It implements a batch-oriented, operator-based query execution
scheme. Under this scheme, table data are splits up to large chunks and pushed from one
operator to another for processing.

Buffer management
PG-Strom uses PostgreSQL heap buffer for providing required data to the GPU operators
whenever the data are requested[30]. This buffer controls the data transfer between shared
memory and persistent storage, which works very efficiently. PG-Strom also supports the
demand paging of GPU device. Thus it only loads pages that are demanded by the executing
process[30].

Query Placement and Optimisation
The query optimizer of PG-Strom would collaborate with query execution planner of Post-
greSQL. If the estimated cost for those execution plans on CPU is higher, it offers alternative
query execution plans for GPU. However, it requires operators, functions and data types in
use must be supported by PG-Strom for GPU execution[28].

Consistency and Transaction Processing
PG-Strom relies on PostgreSQL transaction strategy, it thus supports implementation of
concurrency and full respect of the system’s constraints and properties when multiple trans-
actions are modifying the state of the system at the same time[31]. The concurrency issue can
be dealt with gracefully because PostgreSQL is fully ACID(atomicity, consistency, isolation,
and durability) compliant and implements transactions isolation.

4.6.3.2 Non-functional properties

Performance
PG-Strom with SSD-to-GPU Direct SQL Execution could speed up average 3.5 times faster[30].
PG-Strom allows the data load to GPU directly and bypasses the PCI express, which cost
expensively on transferring data between CPU and GPU. With this advantage, we could
exploit the parallel computing power from GPU.

Portability
According to the supplied SQL, PG-Strom internally generated GPU programs by CUDA
language. CUDA is a programming environment provided by NVIDIA, which allows imple-
menting the parallel program on GPU device. That is to say, PG-Strom is not a hardware-
oblivious database.

16

4.7 OmniDB
4.7.1 Overview

OmniDB14 is an interactive and powerful, yet lightweight, browser-based database man-
agement tool and it is developed by Zhang, He and others15. OmniDB provides a unified
workspace interface which allows users to manage diverse databases. In addition, it supports
diverse database systems, such as Oracle databases, MySQL and MariaDB. Unlike, C-Store,
GPUQP and StagedDB, OmniDB can perform in any browser and operating system[32].

4.7.2 Architecture

In OmniDB architecture, portability and efficiency are regarded as two main keys. To main-
tain both key properties of OmniDB architecture, a kernel-adapter based implementation
approach is required. As shown in Figure 12, the architecture is composed of a query pro-
cessing kernel, known as qKernel, and architecture-aware adapters.

Figure 12: OmniDB - Kernel Adapter Desgin from [32]

The qKernel includes an execution engine, a scheduler, a cost model and so on. To be
specific, the execution engine helps query processing operators to process the data in parallel.
In addition, the scheduler assigns work units to individual PPEs16. The work unit represents
a certain amount of workload for each PPE’s per scheduling. Also, the cost model is used
for estimating the total cost of executing a work unit. Additionally, each adapter consists
of the software components, parameters and configurations to adapt qKernel to the target
architecture[32].

4.7.3 Exploring the design-space

4.7.3.1 Functional properties

Storage system
OmniDB storage system uses CPU main-memory as its primary data storage location. It is
based on the conclusive fact that in-memory processing is faster than disk based processing.
Also, it saves data in GPU memory cache to improve performance and efficiency.

14https://www.2ndquadrant.com/en/resources/omnidb/
15https://code.google.com/archive/p/omnidb-paralleldbonapu/
16Parallel-Processing Elements

17

Storage model
OmniDB storage model is structured to fit the hardware capabilities of modern CPUs and
GPUs. Hence, OmniDB uses columnar storage data model for highly efficient query process-
ing.

Processing model
OmniDB processing model manages both scheduling and analyzing work units. Individual
work units can have different segments such as an operators, query or chunks of tuples. In
order to process these work units, OmniDB implements block-oriented processing model as
it is highly efficient for working with several chunks of tuples[32].

Buffer management
OmniDB adapts parallel CPU/GPU architectures which consists of multiple threaded-parallel
processing elements. The transfer requirement depends upon the location of element execu-
tion. It can be stated that OmniDB uses several custom constructs to fulfill data transfer
requirements from CPU to GPU, unlike CoGaDB which provides seperate dedicated module.

Query Placement and Optimisation
OmniDB utilises the highest throughput processing device for each work unit which helps
in providing extremely efficient query placement. OmniDB has a scheduler which helps to
make sure the workload does not exceed a certain amount of average workload on the target
processing device. In addition, since OmniDB uses kernel-based approach, its cost model is
deeply related to the adapters which helps in implementing certain optimisation standards.

Consistency and Transaction Processing
OmniDB does not implements any consistency standards in the database system. There is no
transaction support, recovery mechanism or fault tolerance designed due to the complications
introduced by GPU architecture and parallel job executions.

4.7.3.2 Non-functional properties

Performance
When Zhang and the others analyzed OmniDB, they implemented it to four different kinds of
targets which are CPU-only, GPU-only, CPU-GPU and APU. The performance of OmniDB
can be divided into three parts. Firstly, the effectiveness of adapters on each architecture
is evaluated. The result of this one is that the moderate size of work unit is the most
efficient and maximises the performance of query processing. Secondly, how different work
units impacts on the scheduling algorithm of the homogeneous architectures, such as CPU-
only and GPU-only. The utilised scheduling algorithm represented the higher throughput
performance compared to the FIFO scheduling algorithm with 8 to 33% of the improvement
result on the CPU-GPU and 4 to 19% on the APU architectures. Lastly, they analysed
the profiler result of OmniDB. As an example, they compared the normal hash joins on the
NVIDIA GPU profiler with CPU systems and are able to get 20% improvement[32].

Portability
OmniDB can provide hardware-oblivious design due to its implementation of different adapters
for a specific set of operators and cost functions[32]. This database system is not designed
with vendor-specific frameworks and programming constructs due to which it can provide
highly efficient portability.

18

4.8 Virginian
4.8.1 Overview

Virginian was developed by Bakkum and others to utilises the power of GPU to perform heavy
computational query processing with efficient caching. It also provides a service for both
CPU and GPU execution of queries[33]. It is designed as an experiment at NEC laboratory
in America to test and compare data processing on the CPU with GPU specifically NVIDIA.

4.8.2 Architecture

One of the most significant features of Virginian architecture is memory uniting. Each
thread in a thread block approaches the global memory of GPU concurrently with proper
arrangement. Thus, the GPU hardware coalesces them in one memory fetch. Bakkum and
others also built a data structure, named the Tablet as shown in Figure 13, and the tablet
helps the GPU to manage information flexibly. Since the data structure has a high tolerance
of execution speed and the relative speeds of CPU compared to GPU when they are executed,
this data structure is utilised for query execution. It can be used efficiently for both CPU
and GPU execution. Other than those features, there are diverse characteristics to manage
the data structure. Therefore, the speed of GPU query execution increases [33].

Figure 13: Tablet Data Structure from [33]

4.8.3 Exploring the design-space

4.8.3.1 Functional properties

Storage system
Virginian utilises uniform virtual addressing (UVA) for its storage system, so it does not
adapt convention caching of operators. By using the uniform virtual addressing, a GPU
kernel is able to connect data stored right away. After that, the accessed data is delivered to
the device via the bus directly and efficiently.

Storage model
As it is presented above, Virginian utilises Tablet as a data structure. This data structure
saves certain size of data in column-oriented layout. In addition, the Tablet is also able to
store variable sizes of data like strings or VARCHAR.

19

Processing model
As a basic query processing model, Virginian adapts operator-at-a-time processing. Also, it
utilises an alternative processing scheme. Unlike the other systems, Virginian uses an opcode
model for query execution. Using the opcode allows Virginian to avert block-wise processing
on the GPU which is a result of writing and reading redundantly.

Buffer management
Virginian adapts opcode to manage their memory efficiently. Query is broken down into
several steps of opcodes and data transfer requirements for these opcodes is fulfilled by in-
built custom program.

Query Placement and Optimisation
Generally, query processing is able to implement either on the CPU or on the GPU in
Virginian. Therefore, the workload in Virginian does not need to be divided between CPU
and GPU. Also, unlike other DBMSs such as OmniDB and MapD, query optimiser which
works for both does not exist in Virginian.

Consistency and Transaction Processing
Virginian provides reduced memory transaction. This is because by using the same kernel
operation, it does not require the movement of intermediate state [33]. Other than this, there
is no construct of consistency management or transaction processing provided in any of the
research papers related to Virginian.

4.8.3.2 Non-functional properties

Performance
Bakkum and others implemented the dataset composed of about eight million rows of arbi-
trarily generated numerical values. They also executed five different categorised configura-
tions which are single core, multi-core, serial, mapped and cached. According to Figure 14,
it shows that mapped and cached is much efficient compared to serial. It also shows that
single core execution took the longest time compared to the rest of them and the average
execution time of the mapped GPU and the cached GPU are also the lowest[33].

Figure 14: Data Movement and Query Runtime Performance, taken from [33]

Portability
Virginian works by implementing certain NVIDIA specific operators in their opcodes gen-
eration since it is designed to compare performance of CPU with NVIDIA GPUs. Hence,
Virginian does not support hardware-oblivious design like most of other GPU-accelerated
database systems stated above.

20

5 GPU-accelerated Database Systems Comparison
In this section, we are comparing above surveyed GPU-accelerated database systems with
respect to their design-space. Using this comparison, we can relate how different database
systems work in the GPU-environment which will help us in building a common reference
design for such systems.

5.1 Functional Properties
5.1.1 Storage System

All 8 GPU-accelerated database systems reviewed do not have generalized storage system
implementations. As shown in the below comparison table, CoGaDB and GPUDB uses
main-memory as their underlying storage system but do not provide any support for SSD
integration and GPU caching. In comparison, MapD provides caching support of up to 512GB
in GPU’s device memory with seamless SSD integration. On the other hand, Brytlyt and
PGstrom use PostgreSQL as their database engine due to which they are more dependent
on disk-based storage system where PGstrom supports SSD with SSD-to-GPU direct SQL
execution feature. Finally, SQream is more driven on supporting hundreds of terabytes
of data whereas OmniDB and Virginian are based upon the early implementation of these
systems which makes them lacking most of the new features such as SSD integration support.

GPU-DBMS Storage System Storage Features
Disk-based Main-memory GPU Caching SSD Support

CoGaDB ×× XX ×× ××
GPUDB ×× XX ×× ××

OmniSci/MapD XX XX XX XX
Brytlyt XX ×× ×× ××
SQream XX ×× ×× ××
PGstrom XX ×× ×× XX
OmniDB ×× XX ×× ××
Virginian ×× XX ×× ××

Table 1: Comparison of Storage System (X - Supported, × - Not Supported)

5.1.2 Storage Model

After surveying these database systems, it can be concluded that GPU-acceleration perfor-
mance and implementation is strongly dependent on using column-oriented storage as their
underlying storage model. All 8 databases systems as shown in below comparison table sup-
ports column-store where Brytlyt and PGstorm also support row-store due to PostgreSQL
being their underlying database engine. Moreover, GPUDB supports additional features such
materialization strategy and several compression techniques which can only be implemented
in a column-oriented data structure. MapD and SQream support partitioning as their addi-
tional feature, where SQream provides both horizontal and vertical partitioning of the data.
Using this feature, data is split into small chunks which increases transfer throughput and
processing speed for queries in the GPU environment.

21

GPU-DBMS Storage Model Model Features
Row Store Column Store Compression Partitioning

CoGaDB ×× XX ×× ××
GPUDB ×× XX XX ××

OmniSci/MapD ×× XX ×× XX
Brytlyt XX XX ×× ××
SQream ×× XX ×× XX
PGstrom XX XX ×× ××
OmniDB ×× XX ×× ××
Virginian ×× XX ×× ××

Table 2: Comparison of Storage Model (X - Supported, × - Not Supported)

5.1.3 Processing Model

In these 8 GPU database systems, there are no database systems using tuple-at-a-time as their
processing model. Unlike the traditional database system, operator-at-a-time or block-at-a-
time processing model allows GPU to exploit its parallel performance. Except for CoGaDB
and Brytlyt, other systems support both operator-at-a-time or block-at-a-time.

GPU-DBMS Processing Model
Tuple-at-a-Time Operator-at-a-Time Block-at-a-Time

CoGaDB ×× XX ××
GPUDB ×× XX XX

OmniSci/MapD ×× XX XX
Brytlyt ×× XX ××
SQream ×× XX XX
PGstrom ×× XX XX
OmniDB ×× XX XX
Virginian ×× XX XX

Table 3: Comparison of Processing Model (X - Supported, × - Not Supported)

5.1.4 Buffer Management

All of the 8 database systems surveyed implements data placement strategies to move data
from CPU to GPU in the most optimized manner. All of these strategies are specific and
customized with respect to the system and its architectural design. CoGaDB, MapD, and
PGstrom implement a dedicated module for supporting the most efficient buffer management
specification. On the other hand, GPUDB, Brytlyt, OmniDB, and Virginian provides custom
functionalities to transfer data from CPU to GPU effectively.

5.1.5 Query Placement and Optimisation

As per the survey, we found that six of databases: CoGaGB, PGstrom, SQream, OmniSci,
Brytlyt, and OmniDB, use some form of the hybrid query optimizer. They implement opti-
miser to split query plans into parts and processes each part on the most suitable processing
device. While two other databases: GPUDB and Virginian, don’t have any specific hybrid
query optimizer, they use query optimiser modules on query plans while transforming queries
into CUDA or OpenCL driver programs.

22

GPU-DBMS Buffer Management Module
Dedicated Custom Data Placement Strategies

CoGaDB XX ×× XX
GPUDB ×× XX XX

OmniSci/MapD XX ×× XX
Brytlyt ×× XX XX
SQream ×× XX XX
PGstrom XX ×× XX
OmniDB ×× XX XX
Virginian ×× XX XX

Table 4: Comparison of Buffer Management (X - Provided, × - Not Provided)

GPU-DBMS Query Placement and Optimisation
Hybrid query optimiser Non-hybrid query optimiser

CoGaDB XX ××
GPUDB ×× XX

OmniSci/MapD XX ××
Brytlyt XX ××
SQream XX ××
PGstrom XX ××
OmniDB XX ××
Virginian ×× XX

Table 5: Comparison of Query Placement and Optimisation (X - Supported, × - Not Sup-
ported)

5.1.6 Consistency and Transaction Processing

Based on the survey we know that CoGaDB, GPUDB, OmniSci, OmniDB, and Brytlyt does
not implement any explicit consistency standards. PGstrom and SQream manage consis-
tency by implementing ACID(atomicity, consistency, isolation and durability) properties.
Overall, CoGaDB, OmniSci, OmniDB, Brytlyt, PGstrom and SQream maintain Immediate
consistency wile GPUDB maintains Immediate/strong Consistency or Eventual Consistency
depending on the configuration. No sufficient data found about Virginian.

GPU-DBMS Consistency and Transaction Processing
Eventual Immediate ACID Properties

CoGaDB ×× XX ××
GPUDB XX XX ××

OmniSci/MapD ×× XX ××
Brytlyt ×× XX ××
SQream ×× XX XX
PGstrom ×× XX XX
OmniDB ×× XX ××
Virginian - - -

Table 6: Comparison of Consistency and Transaction Processing (X - Supported, × - Not
Supported)

23

5.2 Non-Functional Properties
5.2.1 Performance

After analysing the eight GDMS stated above, it can be concluded that all these systems
provide better performance than CPU. Some systems such as Brytlyt and SQream provides
100-300x better performance on OLAP and OLTP workloads. Other systems also provide
similar speedups which clearly concludes the immense practical utility of GPU-accelerated
database systems in the computing field.

GPU-DBMS Performance
Benchmark Better than CPU Claimed Metrics

CoGaDB SSBM XX 34x speedup
GPUDB SSBM XX 10x speedup

OmniSci/MapD OLAP, OLTP XX -
Brytlyt TPC-H XX 300x speedup
SQream 85 TB XX 100x speedup
PGstrom PostgreSQL(CPU) XX 3.5x speedup
OmniDB OLAP XX 27% faster joins
Virginian OLAP XX 17-35x speedup

Table 7: Comparison of Performance

5.2.2 Portability

According to the comparison of portability of the mentioned GDBMS, OmniDB is the only
one being able to support hardware-oblivious database architecture.

GPU-DBMS Portability
Hardware Aware Hardware Oblivious

CoGaDB XX ××
GPUDB XX ××

OmniSci/MapD XX ××
Brytlyt XX ××
SQream XX ××
PGstrom XX ××
OmniDB ×× XX
Virginian XX ××

Table 8: Comparison of Portability (X - Supported, × - Not Supported)

24

6 Open Challenges and Research Questions
In this section, we are identifying potential open challenges and research-oriented question for
GPU-accelerated database systems. These challenges are the major bottlenecks and issues
in the current architecture and implementation of these systems.

1. PCIe transfer bottleneck. One of the most challenging bottleneck and open research
question which is impacting every above surveyed systems. As shown in the GPU ar-
chitecture in Figure 2, PCIe bus is required to transfer data from CPU main-memory to
GPU device memory for computations and analysis, which becomes extremely slow for
large data. This limitation is handled by several systems using different techniques such
as utilizing pinned memory (GPUDB) and creating a unique feature like SSD-to-GPU
direct SQL execution (PGstorm). Now, NVIDIA has designed a new hardware fabric
named NVLink17 that can provide 10x more bandwidth than PCIe, thus breaching this
limitation. Though, this state of the art hardware is still very upcoming, extremely
expensive and currently only available on NVIDIA P100 GPUs.

Figure 15: NVLink providing 10x more bandwidth than PCIe[34]

2. Optimising Data Placement Requirements. Due to the above discussed limitation
and limited size of GPU device memory, understanding the right data which should be
transferred to GPU is extremely challenging. Databases like CoGaDB applies several
optimising and analyzing strategies to understand the data requirements of the query
and try to transfer related data only. But, it is still very difficult to understand entire
data requirement of the query which makes this an open research-oriented problem. If
these strategies are not in place in an optimized manner, then these database systems
will have major performance hits as they will require data for analysis which is still not
transferred to GPU’s device memory.

17https://www.nvidia.com/en-au/data-center/nvlink/

25

3. Columnar Storage Strategy. Since all of these GPU-accelerated databases are
column-oriented databases, there are several difficulties to overcome in order to ex-
ploit the benefits from column-oriented storage. First, accessing multiple columns at
one time for computing purpose is random and discontinuous, and the random access
to the hard disk will seriously affect the performance. Increasing the buffer area for
storing the retrieved data can reduce the time for accessing the hard disk. Second, for
parallel processing, it’s necessary to have data segmented. However, segmenting data
within a column may not fall in the same record as a corresponding point within an-
other column, resulting in misarranged data. Therefore, the block-based segmentation
strategy is a way to deal with this problem, but the strategy has its own difficulties
to cope with as well. In conclusion, in order to perform efficiently on column-oriented
storage, these GPU-accelerated databases should come up with different approaches to
solve these problems of columnar storage[35].

4. Query Compilation for Multiple Devices. In traditional databases systems, the
query operation only runs on CPU which makes the query optimization straightforward.
However, While some of the GPU-accelerated databases, such as SQream DB, utilize
both CPU and GPU for query operations, the strategy of query optimization and query
compilation makes a big impact. To exploit the biggest performance of GPU computing,
the strategy has to assign those task which could be parallel processed concurrently. In
the end, both CPU and GPU should cooperate well to improve the performance. Thus,
the query compilation strategy is a challenge for GPU-accelerated databases.

5. Disk-IO bottleneck. GPUs will not improve performance for disk-based database
systems, since most of the time will be spent in disk IO. GPUs improve performance
only when data is in main system memory, hence it’s much better to keep hot data in
main memory.[20]

6. Efficient parallel processing for SQL joins. The traditional approach for running
joins on CPU and is not well suited for the hundreds of thousands of cores in a GPU
system. Since GPU’s have cores grouped in chunks, with each chunk running the same
instructions, most GPU Databases have a tough time with join operations. There is
however one GPU Database that has solved this challenge – Brytlyt.[20]

7. Implementation in Diverse Architecture. Since OmniDB does not fully support
on all architectures, this requires to do a future enhancement. Therefore, it needs to
be evaluated on other systems including Intel Xeon Phi[32].

8. Multi GPU and GPU/CPU concurrency. Currently, OpenCL compilers do not
support enough functions for concurrency so it causes several errors related to it. By
enabling multi-GPU and GPU/CPU concurrency, the total productivity will be in-
creased[36].

26

7 Conclusion
In this paper, we surveyed different GPU-accelerated database systems by exploring their
design-space. Using this survey, we are able to summarise our understanding on the basis
of different functional and non-functional parameters which helped us in evaluating several
scenarios for identifying the most appropriate GPU-aware DBMS. In summary, each of these
database systems can be used in different scenarios which is visualized as a flowchart in Figure
16. There can be other scenarios in which these systems and also other systems which we
are not reviewing might be more appropriate, but this visualization can help us understand
how GPU-accelerated database system fit in the data analytics and computing field.

Figure 16: Applicable GPU-accelerated database based on the requirements

27

References
[1] Shekhar Borkar and Andrew A. Chien. “The Future of Microprocessors”. In: Commun.

ACM 54.5 (May 2011), pp. 67–77. issn: 0001-0782. doi: 10.1145/1941487.1941507.
url: http://doi.acm.org/10.1145/1941487.1941507.

[2] John D Owens et al. “A survey of general-purpose computation on graphics hardware”.
In: Computer graphics forum. Vol. 26. 1. Wiley Online Library. 2007, pp. 80–113.

[3] Akshay Gautam and Ritesh K Gupta. GPU enabled database systems. US Patent
8,392,463. Mar. 2013.

[4] Sebastian Breß et al. “Exploring the Design Space of a GPU-Aware Database Architec-
ture”. In: New Trends in Databases and Information Systems. Ed. by Barbara Catania
et al. Cham: Springer International Publishing, 2014, pp. 225–234. isbn: 978-3-319-
01863-8.

[5] Sebastian Breß et al. “GPU-Accelerated Database Systems: Survey and Open Chal-
lenges”. In: Transactions on Large-Scale Data- and Knowledge-Centered Systems XV:
Selected Papers from ADBIS 2013 Satellite Events. Ed. by Abdelkader Hameurlain
et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 1–35. isbn: 978-3-662-
45761-0. doi: 10.1007/978-3-662-45761-0_1. url: https://doi.org/10.1007/
978-3-662-45761-0_1.

[6] André Brodtkorb, Trond Hagen, and Martin Sætra. “Graphics processing unit (GPU)
programming strategies and trends in GPU computing”. In: Journal of Parallel and
Distributed Computing 73 (Jan. 2013), pp. 4–13. doi: 10.1016/j.jpdc.2012.04.003.

[7] Max Heimel and Volker Markl. “A First Step Towards GPU-assisted Query Optimiza-
tion”. In: The Third International Workshop on Accelerating Data Management Sys-
tems Using Modern Processor and Storage Architectures, Istanbul, Turkey (Jan. 2012).

[8] Sebastian Breß. “The Design and Implementation of CoGaDB: A Column-oriented
GPU-accelerated DBMS”. In: Datenbank-Spektrum 14.3 (Nov. 2014), pp. 199–209. issn:
1610-1995. doi: 10.1007/s13222-014-0164-z. url: https://doi.org/10.1007/
s13222-014-0164-z.

[9] Sebastian Breß and Gunter Saake. “Why It is Time for a HyPE: A Hybrid Query
Processing Engine for Efficient GPU Coprocessing in DBMS”. In: Proc. VLDB Endow.
6.12 (Aug. 2013), pp. 1398–1403. issn: 2150-8097. doi: 10.14778/2536274.2536325.
url: http://dx.doi.org/10.14778/2536274.2536325.

[10] Sebastian Breß et al. “Generating Custom Code for Efficient Query Execution on Het-
erogeneous Processors”. In: CoRR abs/1709.00700 (2017). arXiv: 1709.00700. url:
http://arxiv.org/abs/1709.00700.

[11] R. Haberkorn S. Breß and S. Ladewig. CoGaDB reference manual. http://wwwiti.
cs.uni-magdeburg.de/iti_db/research/gpu/cogadb/0.3/doc/refman.pdf. 2014.

[12] Bingsheng He et al. “Relational Query Coprocessing on Graphics Processors”. In: ACM
Trans. Database Syst. 34.4 (Dec. 2009), 21:1–21:39. issn: 0362-5915. doi: 10.1145/
1620585.1620588. url: http://doi.acm.org/10.1145/1620585.1620588.

[13] Pat O’neil, Betty O’neil, and Xuedong Chen. “The Star Schema Benchmark (SSB)”.
In: (Jan. 2009).

28

https://doi.org/10.1145/1941487.1941507
http://doi.acm.org/10.1145/1941487.1941507
https://doi.org/10.1007/978-3-662-45761-0_1
https://doi.org/10.1007/978-3-662-45761-0_1
https://doi.org/10.1007/978-3-662-45761-0_1
https://doi.org/10.1016/j.jpdc.2012.04.003
https://doi.org/10.1007/s13222-014-0164-z
https://doi.org/10.1007/s13222-014-0164-z
https://doi.org/10.1007/s13222-014-0164-z
https://doi.org/10.14778/2536274.2536325
http://dx.doi.org/10.14778/2536274.2536325
http://arxiv.org/abs/1709.00700
http://arxiv.org/abs/1709.00700
http://wwwiti.cs.uni-magdeburg.de/iti_db/research/gpu/cogadb/0.3/doc/refman.pdf
http://wwwiti.cs.uni-magdeburg.de/iti_db/research/gpu/cogadb/0.3/doc/refman.pdf
https://doi.org/10.1145/1620585.1620588
https://doi.org/10.1145/1620585.1620588
http://doi.acm.org/10.1145/1620585.1620588

[14] Yuan Yuan, Rubao Lee, and Xiaodong Zhang. “The Yin and Yang of Processing Data
Warehousing Queries on GPU Devices”. In: Proc. VLDB Endow. 6.10 (Aug. 2013),
pp. 817–828. issn: 2150-8097. doi: 10.14778/2536206.2536210. url: http://dx.
doi.org/10.14778/2536206.2536210.

[15] Sriram Padmanabhan et al. “Block Oriented Processing of Relational Database Oper-
ations in Modern Computer Architectures”. In: Proceedings of the 17th International
Conference on Data Engineering. Washington, DC, USA: IEEE Computer Society,
2001, pp. 567–574. isbn: 0-7695-1001-9. url: http://dl.acm.org/citation.cfm?id=
645484.656552.

[16] Todd Mostak. “An overview of MapD (massively parallel database)”. In: Massachusetts
Institute of Technology (April 2013). url: http://www.smallake.kr/wp-content/
uploads/2014/09/mapd_overview.pdf.

[17] Todd Mostak. MapD has rebranded to OmniSci. Sept. 2018. url: https : / / www .
omnisci.com/blog/mapd-has-rebranded-to-omnisci/.

[18] Inc. OmniSci. “GPU-accelerated Analytics: Big Data Analytics at Speed and Scale”.
In: OmniSci (Sept 2013). url: http://www2.omnisci.com/resources/technical-
whitepaper/lp.

[19] Hardware Reference Configuration Guide. url: https://www.omnisci.com/docs/v3.
6.0/getting-started/hwRefCfgGuide/.

[20] GPU database acceleration on PowerEdge R940xa – Brytlyt. Feb. 2019. url: https:
//www.brytlyt.com/resources/gpu- database- acceleration- on- poweredge-
r940xa/.

[21] A GPU Database thats just right for you: A Guide. Feb. 2019. url: https://www.
brytlyt.com/resources/articles/gpu-database-guide/.

[22] Brytlyt. url: https://dbdb.io/db/brytlyt.
[23] CMU Database Group. Hardware Accelerated Database Lectures #5 - Brytlyt (Richard

eyns). Nov. 2018. url: https://www.youtube.com/watch?v=oL0IIMQjFrs&list=
PLSE8ODhjZXjbj%20yrcqgE6_lCV6xvzffSN&index=5.

[24] Brytlyt makes ground-breaking progress on the TPC-H benchmark! – Brytlyt. Apr.
2019. url: https://www.brytlyt.com/blog/brytlyt-makes-ground-breaking-
progress-on-the-tpc-h-benchmark/.

[25] SQream.GPU-Accelerated Data Warehouse. 2018. url: https://sqream.com/product/
architecture/.

[26] Timothy Prickett Morgan. Telco Calls On GPU-Native SQream SQL Database. Mar.
2014. url: http://www.enterpriseai.news/2014/03/28/telco- calls- gpu-
native-sqream-sql-database/.

[27] SQream. SQream DB Technical Whitepaper: A database designed for exponentially
growing data. July 2017. url: http://temperfield.com/wp- content/uploads/
2018/06/SQream-DB-Technical-Whitepaper-Tf.pdf.

[28] PG-Strom. PG-Strom Overview. 2019. url: http://heterodb.com/manual.html#
what_is_pgstrom.

[29] Raja K Thaw. GPU databases;talk of the town. July 2018. url: https : / / www .
linkedin.com/pulse/gpu-databasestalk-town-raja-k-thaw/.

[30] Kohei KaiGai. PG-Strom v2.0 Technical Brief. Apr. 2018. url: https://www.slideshare.
net/kaigai/pgstrom-v20-technical-brief-17apr2018.

29

https://doi.org/10.14778/2536206.2536210
http://dx.doi.org/10.14778/2536206.2536210
http://dx.doi.org/10.14778/2536206.2536210
http://dl.acm.org/citation.cfm?id=645484.656552
http://dl.acm.org/citation.cfm?id=645484.656552
http://www.smallake.kr/wp-content/uploads/2014/09/mapd_overview.pdf
http://www.smallake.kr/wp-content/uploads/2014/09/mapd_overview.pdf
https://www.omnisci.com/blog/mapd-has-rebranded-to-omnisci/
https://www.omnisci.com/blog/mapd-has-rebranded-to-omnisci/
http://www2.omnisci.com/resources/technical-whitepaper/lp
http://www2.omnisci.com/resources/technical-whitepaper/lp
https://www.omnisci.com/docs/v3.6.0/getting-started/hwRefCfgGuide/
https://www.omnisci.com/docs/v3.6.0/getting-started/hwRefCfgGuide/
https://www.brytlyt.com/resources/gpu-database-acceleration-on-poweredge-r940xa/
https://www.brytlyt.com/resources/gpu-database-acceleration-on-poweredge-r940xa/
https://www.brytlyt.com/resources/gpu-database-acceleration-on-poweredge-r940xa/
https://www.brytlyt.com/resources/articles/gpu-database-guide/
https://www.brytlyt.com/resources/articles/gpu-database-guide/
https://dbdb.io/db/brytlyt
https://www.youtube.com/watch?v=oL0IIMQjFrs&list=PLSE8ODhjZXjbj%20yrcqgE6_lCV6xvzffSN&index=5
https://www.youtube.com/watch?v=oL0IIMQjFrs&list=PLSE8ODhjZXjbj%20yrcqgE6_lCV6xvzffSN&index=5
https://www.brytlyt.com/blog/brytlyt-makes-ground-breaking-progress-on-the-tpc-h-benchmark/
https://www.brytlyt.com/blog/brytlyt-makes-ground-breaking-progress-on-the-tpc-h-benchmark/
https://sqream.com/product/architecture/
https://sqream.com/product/architecture/
http://www.enterpriseai.news/2014/03/28/telco-calls-gpu-native-sqream-sql-database/
http://www.enterpriseai.news/2014/03/28/telco-calls-gpu-native-sqream-sql-database/
http://temperfield.com/wp-content/uploads/2018/06/SQream-DB-Technical-Whitepaper-Tf.pdf
http://temperfield.com/wp-content/uploads/2018/06/SQream-DB-Technical-Whitepaper-Tf.pdf
http://heterodb.com/manual.html#what_is_pgstrom
http://heterodb.com/manual.html#what_is_pgstrom
https://www.linkedin.com/pulse/gpu-databasestalk-town-raja-k-thaw/
https://www.linkedin.com/pulse/gpu-databasestalk-town-raja-k-thaw/
https://www.slideshare.net/kaigai/pgstrom-v20-technical-brief-17apr2018
https://www.slideshare.net/kaigai/pgstrom-v20-technical-brief-17apr2018

[31] Dimitri Fontaine. PostgreSQL Concurrency: Isolation and Locking. July 2018. url:
https://tapoueh.org/blog/2018/07/postgresql-concurrency-isolation-and-
locking/.

[32] Shuhao Zhang et al. “OmniDB: Towards Portable and Efficient Query Processing on
Parallel CPU/GPU Architectures”. In: Proc. VLDB Endow. 6.12 (Aug. 2013), pp. 1374–
1377. issn: 2150-8097. doi: 10.14778/2536274.2536319. url: http://dx.doi.org/
10.14778/2536274.2536319.

[33] Peter Bakkum and Srimat Chakradhar. “Efficient Data Management for GPU Databases”.
In: 2012.

[34] NVIDIA NVLink Fabric. https://www.nvidia.com/en-au/data-center/nvlink/.
[35] Jiang Buxing. What You Possibly Don’t Know About Columnar Storage. Sept. 2017.

url: https://www.datasciencecentral.com/profiles/blogs/what-you-possibly-
don-t-know-about-columnar-storage.

[36] Alastair F. Donaldson et al. “Forward Progress on GPU Concurrency”. In: 28th Inter-
national Conference on Concurrency Theory (CONCUR’17). Berlin, Germany, Sept.
2017, 1:1–1:13.

30

https://tapoueh.org/blog/2018/07/postgresql-concurrency-isolation-and-locking/
https://tapoueh.org/blog/2018/07/postgresql-concurrency-isolation-and-locking/
https://doi.org/10.14778/2536274.2536319
http://dx.doi.org/10.14778/2536274.2536319
http://dx.doi.org/10.14778/2536274.2536319
https://www.nvidia.com/en-au/data-center/nvlink/
https://www.datasciencecentral.com/profiles/blogs/what-you-possibly-don-t-know-about-columnar-storage
https://www.datasciencecentral.com/profiles/blogs/what-you-possibly-don-t-know-about-columnar-storage

	Introduction
	Background Considerations
	The design-space of GPU-accelerated DBMS
	A survey of GPU-accelerated database systems
	CoGaDB
	GPUDB
	OmniSci/MapD
	Brytlyt
	SQream
	PGstrom
	OmniDB
	Virginian

	GPU-accelerated Database Systems Comparison
	Functional Properties
	Non-Functional Properties

	Open Challenges and Research Questions
	Conclusion

